50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR

Ver: 5

Page: 1 of 16

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

TYPE: 50V, 100V, 500V, 1KV, 2KV, TEMPERATURE COMPENSATING CAPACITOR

CUSTOMER:		

DOC. NO.: POE-D01-00-E-05

Ver.: 5

APPROVED BY CUSTOMER

VENDOR:

■ WALSIN TECHNOLOGY CORPORATION

566-1, KAO SHI ROAD, YANG-MEI

TAO-YUAN, TAIWAN

☐ PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY

DEVELOPMENT ZONE, CHINA

MAKER: PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY DEVELOPMENT ZONE,CHINA

Record of change

Date	Version	Description							
2008.6.3	1	1. D08-00-E-14 (before) → POE-	D01-00-E-01 (1 st e	edition)				
2008.8.22	2	1.Revised diamet	er as below:						
		Before	Now	Before	Now				
		CH5000R5X040*	not available	SL500181X060*	SL500181X050*				
		CH1010R5X040*	not available	SL500241X070*	SL500241X060*	6.7			
		CH501360X050*	CH501360X060*	SL500361X080*	SL500361X070*	6-7			
		CH501620X080*	CH501620X060*	SL500391X080*	SL500391X070*				
		CH501680X080*	CH501680X060*	SL101181X060*	SL101181X050*				
		CH501750X080*	CH501750X060*	SL101241X070*	SL101241X060*				
		CH501820X080*	CH501820X070*	SL101361X080*	SL101361X070*				
		CH501101X080*	CH501101X070*	SL101391X080*	SL101391X070*				
		CH102080X060*	CH102080X050*	SL102680X060*	SL102680X050*				
		CH102100X060*	CH102100X050*	SL102121X100*	SL102121X060*				
		CH102120X060*	CH102120X050*	SL102151X100*	SL102151X070*				
		CH102620X080*	CH102620X070*	SL102181X100*	SL102181X070*				
		CH102820X100*	CH102820X080*	SL102201X100*	SL102201X080*				
				SL102221X100*	SL102221X080*				
		2. Complete lead	code	•		16-19			
		3.Add last SAP coo	de " H" for halogen a	and Pb free, epoxy r	esin	8			
2008.12.12	3	1. Complete the 1	3 th to 17 th codes of S	AP P/N.		4-7			
		2. Page layout ad	justment.						
			when the coating res	in is Halogen and P	R free Fnovy				
2000 0 10	4				В нес вроху.				
2009.8.19	4	_	POE logo to Walsi	_					
		2.Operating temper	rature range change f	From -25°C \sim +85°C	to -25° C $\sim +125^{\circ}$ C.	11			
2010.8.24	5	1. Change the di	Change the diameter dimension from 060 to 070 for P/N CH 500V						
		62pF&68pF&							
			•	on dimonsian is OF	(0) for D/N CI 11/X/	8			
	2. Add 10pF~39pF(Code of diameter dimension is 050) for P/N SL 1KV.								

Table of Contents

No.	Item	Page
1	Part number for SAP system	4/16
2	Mechanical	5/16~6/16
3	Capacitance value vs. Rate voltage, product diameter	7/16~8/16
4	Marking	8/16
5	Taping Format	9/16
6	Packing specification	10/16
7	Specification and test method	11/16~14/16
8	Cautions & notices	15/16~16/16

1. Part number for SAP system(total eighteen code):

● Temperature characteristic : CH:0±60ppm/°C, SL:+350~-1000ppm/°C

2 Rated voltage (Vdc):

Voltage	50V	100V	500V	1000V	2000V
Code	500	101	501	102	202

❸Capacitance(pF):

Capacitors (pF)	47	100	330	470	820
Code	470	101	331	471	821

②Capacitance tolerance : C: ±0.25pF (For below 5pF) \ D: ±0.5pF (For6~10pF) \ J: ±5% (For above 10pF)

6 Nominal body diameter dimension:

Diameter size	4mm	5mm	6mm	7mm	8mm	9mm	10mm	11mm	12mm
Code	040	050	060	070	080	090	100	110	120

6 Code of lead type: Please refer to Item "2.Mechanical".

• Packing mode and lead's length (identified by 2-figure code)

Taping Code	Description				
AN	Ammo / Pitch of component:12.7 mm				

Bulk Code	Description
3E	Lead's length L: 3.5mm
04	Lead's length L: 4mm
4E	Lead's length L: 4.5mm
20	Lead's length L: 20mm

8Length tolerance

Code	Description
A	±0.5 mm(Only for short kink lead code)
В	±1.0 mm
С	Min.
D	Taping special purpose

Pitch

Code	Description	Code	Description
5	5.0±0.8mm (For Bulk)	7	7.5 ±1mm
5	5.0+0.8mm-0.2mm (For Taping)	0	10.0 ±1mm
2	2.5 ±0.8 mm		

Coating code

Code	Description
P	Phenolic resin -Pb free, voltage≤1kV
A	Halogen free and Pb free, phenolic resin, voltage ≤ 1kV
В	Epoxy Resin, Pb free, voltage≥2kV
Н	Halogen free and Pb free, epoxy resin, voltage ≥ 2kV

2. Mechanical:

Available lead code: (unit: mm)

Available lead	d code: (unit:	mm)					
Lead type	SAP P/N (13-17) digits	Old P/N Ref. to "2.1 Old P/N"	Pitch (F)	Lead length (L)	Available rated voltage	Packing	Lead configuration
	B20C2	5	2.5 ± 0.8	20 MIN.	50V&100V		
	B20C5	6	5.0 ± 0.8	20 MIN.]	Dmax Tmax
	B20C6	7	6.4 ± 1.0	20 MIN.	1	Bulk	() (e
Lead style: B	B20C0	С	10 ± 1.0	20 MIN.	50V&100V,		TV. (A)
Straight long	B20C7	W4	7.5 ± 1.0	20 MIN.	500V,		1 1 11
lead	BAND5	G	5.0 +0.8 -0.2	Taping Spec. (Ref.to page.9)	1KV,2KV	Tap. Ammo	Ød
	BAND2	F	2.5 ± 0.8		50V&100V		
	L05B2	1	2.5 ± 0.8	5.0 ± 1.0	30 V & 100 V		Dmax. Tmax.
_	L05B5	2	5.0 ± 0.8	5.0 ± 1.0			
Lead style: L	L05B0	A	10 ± 1.0	5.0 ± 1.0			mai la i
Straight short	L05B6	P14	6.4 ± 1.0	5.0 ± 1.0	50V&100V,	Bulk	
lead	L05B7 L4EB5	P16 A5	7.5 ± 1.0 5.0 ± 0.8	5.0 ± 1.0 4.5 ± 1.0	500V, 1KV, 2KV		
-	L4EB7	A3 A7	3.0 ± 0.8 7.5 ± 1.0	4.5 ± 1.0 4.5 ± 1.0	2 K V		Ød
-	L4EB0	A0	10 ± 1.0	4.5 ± 1.0			Ų <u> </u>
	H05B5	8	5.0 ± 0.8	5.0 ±1.0			
	H05B7	Т3	7.5 ± 1.0	5.0 ±1.0	1		
	H05B0	В	10 ± 1.0	5.0 ±1.0]		
	H20C0	T4	10 ± 1.0	20 MIN.			
	H20C5	9	5.0 ± 0.8	20 MIN.			Dmax. Tmax.
_	H04A5	B5	5.0 ± 0.8	4.0 ± 0.5	50V&100V,		
Lead style: H	H04A7 H04A0	B7 B0	7.5 ± 1.0	4.0 ± 0.5	500V, 1KV,	Bulk	
-	H3EA5	Н1	10 ± 1.0 5.0 ± 0.8	4.0 ± 0.5 3.5 ± 0.5	2KV		5.0max
Inside kink	H3EA7	H2	7.5 ± 1.0	3.5 ± 0.5 3.5 ± 0.5			
lead	H3EA0	H3	10 ± 1.0	3.5 ± 0.5	1		Ød T
	H4EB5	H5	5.0 ± 0.8	4.5 ± 1.0			╙ <u>╒╜</u> ┺╸ ╚
	H4EB7	Н7	7.5 ± 1.0	4.5 ± 1.0			2 2 2 2
	H4EB0	Н0	10 ± 1.0	4.5 ± 1.0			
	HAND5	Н	5.0 +0.8 -0.2	Taping SPEC. (Ref.to page.9)	50V&100V, 500V, 1KV, 2KV	Tap. Ammo	
	X3EA5	Q1	5.0±0.8]			D. Salara
[X3EA7	Q2	7.5±1.0	3.5 ± 0.5			Dmax. Tmax.
	X3EA0	Q3	10±1.0				
Lead style: X	X04A5	X5	5.0±0.8		50V&100V,		5.0max
Outside kink	X04A7	X7	7.5±1.0	4.0 ± 0.5	500V, 1KV,	Bulk	
lead	X04A0	X0	10±1.0		2KV		Ød-
	X05B5	X1	5.0±0.8				1
	X05B7	X2	7.5±1.0	5.0 ± 1.0			
	X05B0	X3	10±1.0	-			
	D04A5	D5	5.0±1.0				
Lead style : D	D04A7	D7	7.5±1.0	4.0 ± 0.5			Dmax. Tmax.
Lead Style · D	D04A0	D0	10±1.0	1.5 _ 0.0			ä n ä
	D3EA5	D1	5.0±0.8		50V&100V,	Bulk	4 max
Vertical kink	D3EA7	D2	7.5±1.0	3.5 ± 0.5	500V, 1KV, 2KV		
short lead	D3EA0	D3	10±1.0	3.5 ± 0.5			
-	DAND5	D	5.0 ^{+0.8} -0.2	Taping SPEC. (Ref.to page.9)		Tap. Ammo	

Lead type	SAP P/N (13-17) digits	Old P/N Refer to "2.1 Old P/N"	Pitch (F)	Lead length (L)	Available rated voltage		Lead configuration	
	M05B5	M6	5.0 ± 0.8		50V&100V, 500V, 1KV, 2KV	Bulk	Dmax. Tmax.	
I and state 'M	M05B7	M4	7.5 ± 1.0	5.0 ± 1.0			TOTAL	
Lead style: M	M05B0	M5	10 ± 1.0				5.0max	
Double outside kink lead	M04B5	M6	5.0 ± 0.8					
Kilik lead	M04B7	M4	7.5 ± 1.0	4.0 ± 1.0			xem0.6	
	M04B0	M5	10 ± 1.0				[

- % Lead diameter ϕ = 0.6 +/-0.06 mm
- ** Phenolic resin coating for 50V/500V/1KV product; Epoxy resin coating for 2KV product.
- **※ e** (Coating **extension** on leads):

For straight lead style: 1.5mmMax when the rated voltage is 50Vdc & 100Vdc;

- 2.0mmMax when the rated voltage is 500Vdc and 1KVdc;
- 3.0mmMax when the rated voltage is 2KVdc.

For kink lead style: not exceed the kink.

When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.

2.1 Old P/N:

- (Ex.)CH U <u>5</u> 470 J \mathbf{L} <u>7</u> \mathbf{F} (2) (5) (8) (1)(3)**(4)** (6) (7)
- (1)Temperature characteristic (identified code) : CH:0±60ppm/°C, SL:+350~-1000ppm/°C
- (2)Rated voltage (identified by code)
- (3)Nominal body diameter dimension
- (4)Capacitance (identified by 3-figure code)
- (5)Capacitance tolerance (identified by code)
- (6)Lead style (configuration) (identified by code):

L: straight long lead; S: straight short lead; D: vertical kink lead; X: outside kink lead; H: inside kink lead (7)Lead Space:

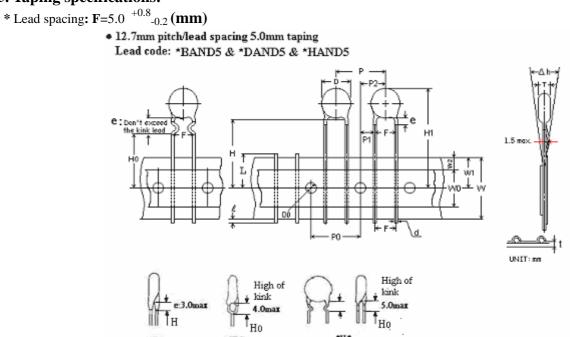
 $5=5\pm0.8$ (Bulk), 5=+0.8-0.2mm (Taping), $7=7.5\pm1.0$ mm, $0=10\pm1.0$ mm

(8) Taping type or other code:

Code	Pitch component
Н	12.7mm
No code	BULK

${\bf 3.\ Capacitance\ value\ vs.\ rated\ voltage,\ product\ diameter:}$

Rate voltage	T.C		CH (CLASS I, Temperature:-25°C~+85°C, T.C.C.: 0±60ppm/°C)																	
Damax (mm) 4.5 5.5 6.5 7.5 8.5 10.5 11.5 12.5 5.5 6.5 7.5 10.5 6.0 7.0 8.0 9.0 11.0 7.5 9.5 Tamax (mm) 3.5 3	Rate voltage				50	V & 100)V		_							1KV			2 k	(V
Damax (mm) 4.5 5.5 6.5 7.5 8.5 10.5 11.5 12.5 5.5 6.5 7.5 10.5 6.0 7.0 8.0 9.0 11.0 7.5 9.5 Tamax (mm) 3.5 3	Dφ	040	050	060	070	080	100	110	120	050	060	070	100	050	060	070	080	100	060	080
Tmax. (mm) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	D max. (mm)	4.5	5.5	6.5	7.5	8.5	10.5	11.5	12.5	5.5	6.5	7.5	10.5	6.0				11.0	7.5	9.5
0.5		3.5		3.5	3.5	3.5	3.5	3.5			4.0	4.0		4.5	4.5		4.5	4.5	4.5	4.5
1	0.5									0R5										
2		010																		
3																				
5 050 050 050 060 060 060 060 060 060 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 070 100 100 100 110 1120 120 120 120 120 120 120 120 120 220 220 220 220 220																				
6	4	040								040									040	
7	5	050								050										
8																				
100 100 120 120 120 120 120 120 150 150 150 150 150 150 150 180																				
12																				
15																				
18																				
200 200																				
22 220 331 331 330																				
24 240 270 271 271 271 271 271 271 271 271 271 270 270 270 271 270 271 271 271 271 271 271 271 271 271 271 271 271 271																				
270	22													220	240				220	240
330 330																				
36 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 390																				
39 390 390 390 390 390 390 470 510		330	260							330	260				330	260				
47 470 470 470 470 470 51 470 510 470 510 470 510 470 510 470 510 470 510 510 510 510 510 510 510 510 510 510 510 560	30																			
51 510 510 510 510 510 510 510 510 510 510 560																				
56 560 560 560 560 560 620																				470
62 620 620 620 620 620 620 680 680 680 680 680 75 750 750 750 750 750 750 820																				
68 680 680 680 680 680 75 750 750 750 750 750 750 750 750 750 750 820			200	620							200	620								
75																				
100 101 101 101 120 121 121 121 150 151 151 151 180 201 201 201 220 221 221 221 240 241 270 271 271 300 301 331 331 360 390 391 391 391	75			750								750				750				
120					820							820					820			
150	100				101							101						101		
180 181 200 201 220 221 240 241 270 271 300 301 330 331 360 361 390 391								,												
200 201 220 221 240 241 270 271 300 301 330 331 360 361 390 391						151							151							
220 221 240 241 270 271 300 301 330 331 360 361 390 391																				
240 241 270 271 300 301 330 331 360 361 390 391																				
270																				
300 301 301 330 331 331 361 390 391 391 391																				
330 331 331 361 360 390 391 391							271													
360 361 361 390 391 391																				
390 391								331	261							-				
									361							-				
	390 470								391							-				-



T.C						SL (CLASS	I, Te	mperat	ture:+2	0°C ~+8	5℃, T.	C.C.: +	-350 ~ -	1000pp	m°C)					
Rate voltage			5	0V/100	V					500V				1 K					2KV		
Dφ	040	050	060	070	080	090	100	050	060	070	080	100	050	060	070	080	060	070	080	100	120
D max. (mm)	4.5	5.5	6.5	7.5	8.5	9.5	10.5	5.5	6.5	7.5	9.0	10.5	6.0	7.0	8.0	9.0	7.5	8.5	9.5	11.5	13.5
T max. (mm)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4.0	4.0	4.0	4.0	4.0	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
3																					
4																					
5																					
6																					
7	000							000													
8	080 100							080 100					100								
12	120							120					120								
15	150							150					150				150				
18	180							180					180				180				
20	200							200					200				200				
22 24	220 240							220 240					220 240				220 240				
27	270							270					270				270				
30	300							300					300				300				
33	330							330					330				330				
36	360							360					360				360				
39	390							390					390				390				
47	470							470					470				470				
51 56	510 560							510 560					510 560				510 560				
68	680							680					680				680				
75	750							750					000	750			750				
82	820							820						821			820				
100	101							101						101				101			
120		121							121					121					121		
150 180		151 181							151	181					151 181				151	181	
200		101	201							201					101	201				201	
220			221							221						221				221	
240			241								241									241	
270				271							271									271	
300				301							301										301
330				331							331	261									331
360 390				361 391			-					361 391									
470				391	471							391									
500					7/1	501															
510						510															
560						561															
680							681														
750 820							751 821														
1000							821														
1000																					

4. Marking:

		СН	SL			
Marking Remarks	$(2) \longrightarrow (4) \longrightarrow (4) \longrightarrow (5) \longrightarrow (6)$ $(2) \longrightarrow (47 \text{ J} \longrightarrow (4) \longrightarrow (4) \longrightarrow (4) \longrightarrow (6) \longrightarrow (6) \longrightarrow (5) \longrightarrow (6) \longrightarrow (5) \longrightarrow (6) $					
(1). Temp. char.	CH(Phenolic resin): No marking, but recognized by black color presented on the top of product. CH(Epoxy resin): Shall be marked "CH" SL: No marking.					
(2). Rated capacitance	Identified by 3-	Figure Code. Ex. 47pF→"	47",470pF → "471"			
	50V&100V	Marked with code"_"unde	er the rated capacitance.			
(3). Rated voltage	500V	No any marking under the	rated capacitance.			
	1000V&2000V Marked with code: 1000V→"1KV", 2000V→"2KV"					
(4). Capacitance tolerance	C: ± 0.25 pF (For below 5pF) \cdot D: ± 0.5 pF (For6 ~ 10 pF) \cdot J: $\pm 5\%$ (For above 10pF)					
(5). Manufacturer's identification	Shall be marked as " $\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$}\mbox{$\mbox{$\mbox{$}\mbox{$}\mbox{$\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$\mbox{$}\mbo$					
(6). Halogen and Pb free	There is a "-"marking under the code "V" when the coating resin is Halogen and Pt free Epoxy.					

5. Taping specifications:

Item		Symbol	Spec	cification	Remarks
nem		Symbol	Value	Tolerance	Remarks
Body diameter		D	*	max.	See Section"3. Capacitance value vs. rated
Body thickness		T	*	max.	voltage, product diameter".
Lead-wire diameter		d	0.6	+/-0.06	
Pitch of component		P	12.7	±1.0	
Feed hole pitch		P0	12.7	±0.3	Cumulative pitch erroe:1.0mm/20 pitch
Feed hole center to lead		P1	3.85	±0.7	To be measured at bottom of clinch
Hole center to component center	P2	6.35	±1.3		
Lead-to-lead distance	F	5.0	+0.8,-0.2		
Component alignment, F-R	$\triangle h$	0	±2.0		
Tape width		W	18.0	+1.0,-0.5	
Hole-down tape width		W0	11.0	min.	
Hole position		W1	9.0	+0.75,-0.5	
Hole-down tape position		W2	3.0	max.	
Height of component form tape	For straight lead type	Н	20.0	+1.0 -0.5	
center	For kinked lead type	Н0	16.0	±0.5	
Component height		H1	32.25	max.	
Lead-wire protrusion	1	2.0	max.	Or the end of lead wire may be inside the tape.	
Food hole diameter	D0	4.0	±0.2		
Total tape thickness	t	0.7	±0.2	Ground paper:0.5±0.1mm	
Length of sniped lead	L	11.0	max.		
Coating rundown on leads		e	3.0 max	for straight lea	d style; Not exceed the kink leads for kink lead.

6. Packaging:

6-1.Pakaging Styles

Bulk: 1000pcs/bag

Taping: 2000pcs/box for Ammo

WISN POE		POE-D01-00-E-05
50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR	Ver: 5	Page: 11 of 16

7. Specification and test method:

- 7.1 SCOPE: THIS SPECIFICATION APPLIES TO TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR.
- 7.2 TEST CONDITIONS:

UNLESS OTHERWISE SPECIFIED, ALL TESTS SHALL BE OPERATED AT THE STANDARD TEST CONDITIONS OF TEMPERATURE 5°C TO 35°C AND RELATIVE HUMIDITY 45% TO 85%. WHEN FAILS A TEST, RETEST BE OPERATED AT THE CONDITIONS OF TEMPERATURE 25°C \pm 2°C, RELATIVE HUMIDITY OF 60% TO 70% AND BAROMETRIC PRESSURE 860 TO 1060 MBAR.

7.3 HANDLE PROCEDURE: TO AVOID UNEXPECT TESTING RESULTS FROM OCCURRING, THE TESTED CAPACITOR MUST BE KEPT AT ROOM TEMPERATURE FOR AT LEAST 30 MINUTES AND COMPLETELY DISCHARGED.

7.4 TEST ITEMS:

ITEM	POST-TEST	T REQUIREMENTS	TESTING PROCEDURE					
APPEARANCE STRUCTURE SIZE	NO ABNOR	MALITIES	AS SECTION 3.					
MARKING			AS STATED IN SECTION 4					
	BETWEEN' NO ABNOR	TERMINALS: MALITIES	A. BELOW 1KV: 300% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC. B. 1KV & ABOVE: 200% RATED VOLTAGE WITH 50mA MAX. CHARGING CURRENT FOR 1~5 SEC.					
WITHSTAND VOLTAGE	BETWEEN ENCLOSUR		SMALL METALLIC BALLS WITH 1mm DIAMETERS SHALL BE PUT ON A VESSEL AND THE TEST CAPACITOR SHALL BE SUBMERGED EXCEPT 2mm FROM THE TOP OF ITS COMPONENT BODY. THE TEST VOLTAGE SHALL BE APPLIED BETWEEN THE SHORT-CIRCUITED TERMINALS AND THE METALLIC BALLS. (APPLY 1.3KV DC OF RATED VOLTAGE BETWEEN TERMINALS AND ENCLOSURE FOR 1~5 SEC)					
INSULATION RESISTANCE	10000 MΩ MIN		INSULATION RESISTANCE SHALL BE MEASURED AT 60±5 SECONDS AFTER APPLIED VOLTAGE (RATED) RATED VOLTAGE: 50V=50V, 100V=100V, 500V & ABOVE=500V					
CAPACITANCE	TOLERANC C: ±0.25PF J: ±5%	CE: D:±0.50PF K:±10%	TESTING FREQUENCY : 1 MHZ ± 20% TESTING VOLTAGE : 1.0 VRMS					
OPERATING TEMPERATURE RANGE	TURE $ -25^{\circ}\text{C} \sim +125^{\circ}\text{C} $							
Q FACTOR	$ \begin{array}{c c} 30 \text{ PF} \\ \& \text{ ABOVE} \end{array} Q \geq 1000 \\ \hline \text{BELOW} \\ 30 \text{PF} \qquad Q \geq 400 + 20 \times C \\ \end{array} $		- AS ABOVE STIPULATION OF CAPACITANCE					

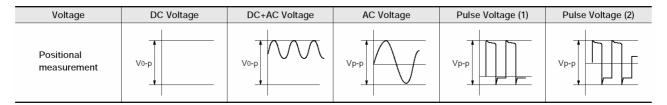
50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE				
TEMPERATURE CHARACTERISTIC	TEMPERATURE COEFFICIENT: CH: 0±60 PPM/°C SL:+350~-1000 PPM/°C FOR (+20°C~+85°C)	ACCORDING TO STEP 1 TO 5 IN ORDER, MEASURED CAPACITANCE WHEN TEMPERATURE REACH BALANCE AND TEMPERATURE COEFFICIENT SHALL BE CALCULATED ON THE FOLLOWING FORMULA: PPM/ $^{\circ}$ C =(C2-C1)×10E6/C1(T2-T1) STEP 1,3,5:25 $^{\circ}$ C STEP 2:-25 $^{\circ}$ C (SL:20 $^{\circ}$ C) STEP 4:85 $^{\circ}$ C NOTE: C1 = CAPACITANCE AS STEP 3 C2 = CAPACITANCE AS STEP 2 OR 4 T1 = TEMPERATURE AS STEP 3 T2 = TEMPERATURE AS STEP 2 OR 4				
	CAPACITANCE TOLERANCE : WITHIN ±0.2% OR ±0.05PF, WHICHEVER IS LARGE	ACCORDING TO ABOVE STEP 1,3 & 5, CAPACITANCE TOLERANCE SHALL BE CALCULATED ON THE FOLLOWING FORMULA: △C%=(G - S)/C1 NOTE: G = GREATEST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 S = LEAST CAPACITANCE AS TESTING RESULT OF STEP 1,3 & 5 C1 = CAPACITANCE AS STEP 3				
TERMINAL STRENGTH	TENSIBLE STRENGTH : NO BREAKDOWN	WIRE DIA.0.5 M/M. LOADING WEIGHT 0.5 KGS, FOR 10±1 SECONDS. WIRE DIA.0.6 M/M. LOADING WEIGHT 1.0 KGS, FOR 10±1 SECONDS.				
SIKENOIII	BENDING STRENGTH : NO BREAKDOWN	WIRE DIA.0.5 mm, LOADING WEIGHT 0.25 KGS. WIRE DIA.0.6 mm, LOADING WEIGHT 0.5 KGS. (BENDING BACK AND FORTH 90 DEGREE TWICE)				
	APPEARANCE : NO ABNORMALITIES	LEAD WIRE OR TERMINALS SHALL BE IMMERSED UP TO 2.0 M/M FORM BODY. (A) BODY DIA. ≤ 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE: 260(+5/-0)°C FOR 3.0±0.5				
SOLDERING	CAP.CHANGE: WITHIN ±2.5% OR ±0.25PF, WHICHEVER IS LARGE.	SECONDS. (B) BODY DIA. > 5.0mm: INTO THE MOLTEN SOLDER OF WHICH TEMPERATURE 260(+5/-0)°C FOR 5~10 SECONDS.				
HEAT RESISTANCE	WITHSTAND VOLTAGE: (BETWEEN TERMINALS) NO ABNORMALITIES	THEN LEAVE AT STANDARD TEST CONDITIONS FOR 1~2 HOURS, THEN MEASURED. **WHEN SOLDERING CAPACITOR WITH A SOLDERING IRON, IT SHOULD BE PERFORMED IN FOLLOWING CONDITIONS. TEMPERATURE OF IRON-TIP: 350~400 °C SOLDERING IRON WATTAGE: 50W MAX.				
SOLDERABILITY	LEAD WIRE SHALL BE SOLDERED OVER 75% OF THE CIRCUMFERENTIAL DIRECTION.	SOLDERING TIME: 3.5 SEC. MAX. TO COMPLY WITH JIS-C-5102 8.4 SOLDER TEMPERATURE255(+5/-0)°C AND DIPPING TIME 2±0.5 SECONDS FLUX: WEIGHT RATIO OF ROSIN 25%				

50V, 100V, 500V, 1KV, 2KV TEMPERATURE COMPENSATING CERAMIC DISC CAPACITOR Ver: 5 Page: 13 of 16

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
	APPEARANCE: NO ABNORMALITIES CAP. CHANGE: CH & SL: WITHIN ±5% OR ±0.5PF, WHICHEVER IS LARGE Q FACTOR:	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40 \pm 2°C FOR 500(\pm 24/-0) HOURS, THEN DRIED FOR 1 \pm 2 HOURS AND MEASURED.
HUMIDITY CHARACTERISTIC	CH & SL: LESS THAN 10PF ==> $Q \ge 200 + 10 \times C$ MORE THAN 10PF AND LESS THAN 30PF => $Q \ge 275 + 5 \times C / 2$ MORE THAN 30PF => $Q \ge 350$ INSULATION RESISTANCE: 1000M Ω MIN.	
HUMIDITY LOADING	APPEARANCE: NO ABNORMALITIES CAP.CHANGE: CH & SL: WITHIN $\pm 7.5\%$ OR ± 0.75 PF, WHICHEVER IS LARGE Q FACTOR: CH & SL: LESS THAN 30 PF => Q $\geq 100 + 10 \times \text{C} / 3$ MORE THAN 30 PF => Q ≥ 200 INSULATION RESISTANCE: 500M Ω MIN.	CAPACITORS SHALL BE SUBJECTED TO A RELATIVE HUMIDITY OF 90 \sim 95% AT 40±2°C FOR 500(+24/-0) HOURS WITH RATED VOLTAGE APPLIED (LESS THAN 50mA), THAN DRIED FOR 1 \sim 2 HOURS AND MEASURED.
HIGH TEMPERATURE LOADING	APPEARANCE: NO ABNORMALITIES CAP. CHANGE: CH & SL: WITHIN $\pm 3\%$ OR ± 0.3 PF, WHICHEVER IS LARGE Q FACTOR: CH & SL: LESS THAN 10 PF => Q $\geq 200 + 10 \times C$ MORE THAN 10 PF & LESS THAN 30 PF => Q $\geq 275 + 5 \times C/2$ MORE THAN 30 PF => Q ≥ 350 INSULATION RESISTANCE: 1000 M Ω MIN.	CAPACITORS SHALL BE SUBJECTED TO A TEST OF: (A) BELOW 1KV: 200% RATED VOLTAGE WITH 50mA MAX. (B) 1KV & ABOVE: 150% RATED VOLTAGE WITH 50mA MAX. FOR 1000(+48/-0) HOURS AT 85°C ± 2°C (FOR CH & SL) AND THEN DRIED FOR 1~2 HOURS AND MEASURED.

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE
	APPEARANCE :	CAPACITORS SHALL BE SUBJECTED TO:
	NO ABNORMALITIES	$-25\pm3^{\circ}\mathbb{C}(30\pm3\min) \rightarrow 25^{\circ}\mathbb{C}(3\min) \rightarrow 85\pm3^{\circ}\mathbb{C}(30\pm3\min) \rightarrow$ 25°\mathcal{C}(3\text{min}) FOR 5 CYCLE.
	CAP. CHANGE :	25 C(Shini) TOR'S CTCEL.
	WITHIN ±5% OR ±0.5PF,	
TEMPERATURE	WHICHEVER IS LARGE	
CYCLING	D.F.	
	$C \le 30pF : Q \ge 275 + (5/2)C$	
	$C \ge 30 pF : Q \ge 350$	
	INSULATION RESISTANCE :	
	1000 MΩ MIN.	


8. Cautions & notices:

8.1. Caution (Rating)

I. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

II. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The frequency of the applied sine wave voltage should be less than 300kHz. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 20°C at an atmosphere temperature of 25°C. When measuring, use a thermocouple of small thermal capacity-K of \emptyset 0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

8.2. Caution (Storage and operating condition)

I. Operating and storage environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 %.

Use capacitors within 6 months.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.3. Caution (Soldering and Mounting)

I. Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

II. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 degrees C. max.

Soldering iron wattage: 50W max.

Soldering time: 3.5 sec. max.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

8.4. Caution (Handling)

Vibration and impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PROUCT IS USED.

8.5. Notice

8.5.1. Notice (Soldering and Mounting)

Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.