Configures the reference voltage used for analog input (i.e. the value used as the top of the input range). The options are:
Arduino AVR Boards (Uno, Mega, etc.)
DEFAULT: the default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts (on 3.3V Arduino boards)
INTERNAL: an built-in reference, equal to 1.1 volts on the ATmega168 or ATmega328P and 2.56 volts on the ATmega8 (not available on the Arduino Mega)
INTERNAL1V1: a built-in 1.1V reference (Arduino Mega only)
INTERNAL2V56: a built-in 2.56V reference (Arduino Mega only)
EXTERNAL: the voltage applied to the AREF pin (0 to 5V only) is used as the reference.
Arduino SAMD Boards (Zero, etc.)
AR_DEFAULT: the default analog reference of 3.3V
AR_INTERNAL: a built-in 2.23V reference
AR_INTERNAL1V0: a built-in 1.0V reference
AR_INTERNAL1V65: a built-in 1.65V reference
AR_INTERNAL2V23: a built-in 2.23V reference
AR_EXTERNAL: the voltage applied to the AREF pin is used as the reference
Arduino SAM Boards (Due)
AR_DEFAULT: the default analog reference of 3.3V. This is the only supported option for the Due.
Syntax
analogReference(type)
Parameters
type: which type of reference to use (see list of options in the description).
Returns
Nothing
Notes and Warnings
After changing the analog reference, the first few readings from analogRead() may not be accurate.
Don’t use anything less than 0V or more than 5V for external reference voltage on the AREF pin! If you’re using an external reference on the AREF pin, you must set the analog reference to EXTERNAL before calling analogRead(). Otherwise, you will short together the active reference voltage (internally generated) and the AREF pin, possibly damaging the microcontroller on your Arduino board.
Alternatively, you can connect the external reference voltage to the AREF pin through a 5K resistor, allowing you to switch between external and internal reference voltages. Note that the resistor will alter the voltage that gets used as the reference because there is an internal 32K resistor on the AREF pin. The two act as a voltage divider, so, for example, 2.5V applied through the resistor will yield 2.5 * 32 / (32 + 5) = ~2.2V at the AREF pin.
We care about the privacy and personal data of our users.
To continue, please give us your consent:
Please confirm that you have read the privacy policy
Thank you for subscribing!
Curious to learn more?
Are you also a teacher, student, or professional that loves using Arduino in your day-to-day activities?
Then keep up-to-date with either our STEM or Professional monthly newsletters.
Arduino weekly newsletter (already subscribed)
Educators can benefit from the ever growing tech that shapes our environment through fun cool projects.
Why not awe your boss with highly innovative ways to help keep your enterprise connected at no extra cost?
Arduino Survey
We'd like to get to know you little better.
Please help us improve by answering this super short optional survey.